Cosmic Variance has this post in their blog:

OO are Ordinary Observers, and BB's are Boltzman Brains...

Along the same lines as given enough time 1000 monkeys can rewrite Shakespeare; given enough time, Quantum Mechanics can recreate Intelligent Observers...

If and after the Universe dies out via heat-death expansion (no more stars, and such), in astronomically distinct time scales. the universe will be dominated by these BB's as OO's will die out.

**WTF!!!**

Don Page says, **WTF** too, and that these conclusions must mean the universe is 'decaying'...

All this reminds me of a short story by Asimov, (one sent to me by Ruben) The Last Question

And some of you may know my very personal and informal stance regarding the second law of thermodynamics....

Also I believe I once told Luis Jose about the 1000 monkey's problem, and its miss use. **One must first demonstrate that the odds truely and unequivocally Increase through time**. One can't just simply jump the gun. For example, monkeys probably won't have an appropriate lifespan and they most very likely die off before they ever finish hamlet.

In any case, I digress. And I contradict my own denial of the second law of thermodynamics. Still... I now understand Asimov's own point of view... And as ever I am awed by his foresight.

**PS:**My mind is just like Kurt's or my Dad's, it only just happens while discussing these subjects... please help me correct all the loose ends, and incoherent thoughts I just wrote...

*:/ :p*

## 2 comments:

mi comentario va a ser enteramente respecto a the last question.. siempre tendremos estas preguntas y miedo a aquellas q parecen no tener respuestas, es por lo que el hombre ha sentido la necesidad de creer en un Dios, en un universal AC, aunque esto me recuerda increiblemente a la percepcion que tenemos de wikipedia: it must have the answer to everything..jeje,, convierte esto a wikipedia en el Dios de los sedientos de conocimiento? .. ya.. me toy yendo lejos.. por otra parte.. lo que más me gustó de The Last Question fue : No problem is insoluble in all conceivable circumstances... kss kss bubuuuu

Esa historia es como que curiosísima.. por su sencillez, y la manera en que presenta una esperanza tan hueca para un desvanecer tan largo.

Y lo triste es que ese es uno de los futuros más probable para este universo.. tanto así, que se considere seriamente la posibilidad de un universo regido por BB´s.

segun Allen Ginsberg las leyes de la termodinámicas se pueden re-escribir de la siguiente manera:

* Primera Ley: "You can't win."

* Segunda Ley: "You can't break even."

* Tercera Ley: "You can't quit."

Para serte sincero.. la primera vez que ley el cuento, lo repudié.. me molesto.

Y yo tengo un serio serio problema con la segunda ley... me molesta seriamente que las estadísticas no me dejen ni siquiera quedar empate.

Aun tengo esperanzas... la estadísticas tienen su excepción.

Arrow of Time

Copiado de Wikipedia:

It should be noted that statistical mechanics gives an explanation for the second law by postulating that a material is composed of atoms and molecules which are in constant motion. A particular set of positions and velocities for each particle in the system is called a microstate of the system and because of the constant motion, the system is constantly changing its microstate. Statistical mechanics postulates that, in equilibrium, each microstate that the system might be in is equally likely to occur, and when this assumption is made, it leads directly to the conclusion that the second law must hold in a statistical sense. That is, the second law will hold on average, with a statistical variation on the order of 1/√N where N is the number of particles in the system. For everyday (macroscopic) situations, the probability that the second law will be violated is practically nil. However, for systems with a small number of particles, thermodynamic parameters, including the entropy, may show significant statistical deviations from that predicted by the second law. Classical thermodynamic theory does not deal with these statistical variations.

Post a Comment